Системы поверхностного теплообмена: в чем преимущества и стоит ли их устанавливать?

Содержание

.

Системы поверхностного теплообмена: в чем преимущества и стоит ли их устанавливать?

Преимущества и недостатки пластинчатых теплообменников

Немалое количество компаний на сегодняшний день производят теплообменники. Причём в каталоге всегда можно обнаружить самые различные виды: пластинчатые теплообменники, кожухотрубные, элементные, витые, оросительные, погружные, ребристые, спиральные, графитовые, двухтрубные и многие другие. Различные типы отличаются, прежде всего, своей конструкцией и принципом работы. Однако среди отличий будет и множество других различных технических характеристик, например, мощность. Стоит также указать, что тот или иной тип устройства может осуществлять работу только в определённых условиях.

Ниже будет подробно рассмотрен пластинчатый теплообменник, в частности, все его достоинства и недостатки. Именно он в настоящее время активно используется в той или иной области.

Прежде всего, нужно сказать о том, что такие агрегаты отличаются хорошей производительностью и высоким уровнем мощности. Однако сразу же стоит отметить, что при необходимости мощность можно увеличить или уменьшить. Это достигается очень просто: нужно всего лишь добавить или убрать пластины. В результате прибавления новых пластин к конструкции тепловой пункт будет осуществлять прекрасную работу. Устройство сможет обеспечивать теплом большее количество человек.

Второе важное достоинство заключается в простом обслуживании. Если, к примеру, произойдёт засорение агрегата, то его без особых усилий можно будет легко разобрать и почистить. Для этого можно использовать обычную воду. После данной процедуры очень важно сначала хорошо высушить, а потом заново собрать. К тому же один человек легко справится с этой задачей, не потратив при этом большие физические усилия и много времени.

Однако здесь сразу же стоит сказать о том, что процедуру чистки не придётся совершать часто, поскольку поверхность пластинчатых теплообменников загрязняется медленно и несильно. Это связано с тем, что у такого агрегата имеется высокая турбулентность потока жидкости, возникающая за счёт рифления. К тому же на низкий уровень загрязняемости влияет и то, что каждая пластина отличается качественной полировкой.

Но и недостатки у пластинчатых теплообменников имеются. Прежде всего, необходимо указать, что стоит пользоваться только качественным теплоносителем. В противном случае в очень скором времени случится засорение, убрать которое можно будет только при помощи специальных средств. Это самый главный минус таких устройств, но от него легко можно будет избавиться. Именно поэтому такие агрегаты являются очень популярными и востребованными.

Статья подготовлена при поддержке компании «ТехноИнжПромСтрой».

Источник: http://federalinform.ru/index.php/2011-06-02-18-56-14/115-2012-02-01-07-56-21/8678-2013-03-20-06-00-45″

Системы поверхностного теплообмена: в чем преимущества и стоит ли их устанавливать?

В системах теплоснабжения в основном применяются поверхностные теплообменные аппараты, в которых теплообмен идет через твердую стенку, разделяющую два теплоносителя. Они используются для развязки систем отопления и снижения параметров теплоносителя во втором контуре отопления (давления и температуры). В системах горячего водоснабжения применение теплообменников позволяет нагревать холодную воду за счет отбора тепла от теплоносителя (закрытая система теплоснабжения).

1.Паровой котел на ТЭЦ или котельной.

4.Теплообменник системы горячего водоснабжения.

5.Теплообменник системы отопления.

Рис. 1. Упрощенная схема систем отопления и горячего водоснабжения
Преимущества такой системы очевидны:
Значительно повышается надежность всей системы теплоснабжения.

Увеличивается срок эксплуатации котлов и трубопроводов.

Отпадает необходимость в прокладке и обслуживании трубопровода горячего водоснабжения от котельной к потребителю.

Значительно снижаются затраты на водоподготовку теплоносителя.

Повышается качество горячей воды.

В процессе внедрения в конце 90-х годов в теплоэнергетике новых технологий и оборудования, все большее применение находят разборные пластинчатые теплообменники () обладающие:

низкими монтажными и эксплуатационными затратами;

длительным сроком эксплуатации (до 25 лет);

гибкостью к параметрам систем тепло- и водоснабжения и к их изменению.

Пластинчатый теплообменник относится к классу более технологичного оборудования, чем кожухотрубные аппараты, применяемые в теплоэнергетике. Потоки теплоносителя и нагревающей среды распространяются между рифлеными пластинами, собранными в пакет (Рис. 1, 2.). За счет этого требуемая площадь теплообмена меньше в 2-10 раз.

Рис. 2. Конструкция пластинчатого теплообменника

Пластинчатый теплообменник состоит из неподвижной плиты (1), соединенной с верхней (2) и нижней (3) направляющими штангами, прижимной плиты (4) и задней стойки (5). Между неподвижной и прижимной плитами находится расчетное количество пластин (6) с уплотнительными прокладками. Пакет пластин стянут резьбовыми стяжками (7). Каналы движения жидкости в аппарате организованны уплотнительными прокладками (Рис. 3). Двойное уплотнение исключает смешивание жидкостей.

Экономичность и простота обслуживания. При забивании, ТПР может быть разобран, промыт и собран двумя низко квалифицированными работниками в течении 4-6 часов. Либо без разборки – химическим методом в течении 2 часов. В

Срок эксплуатации первой выходящей из строя единицы уплотнительной прокладки – у ведущих европейских производителей достигает 10 лет. Срок работы теплообменных пластин 20-25 лет. Стоимость замены уплотнений от стоимости ТПР колеблется в пределах 15-25 %, что экономнее аналогичного процесса замены латунной трубной группы в КТТО, составляющей 80-90% от стоимости аппарата.

Низкотемпературный теплоноситель в системах отопления и горячего водоснабжения позволяет нагревать воду в ТПР до необходимой температуры. Температурная разница между теплоносителем и нагретой водой 2-5 °С.

Стоимость монтажа ТПР и КТТО составляет 2-4 % и 25-35 % от стоимости оборудования соответственно.

Индивидуальный расчет ТПР для каждого объекта по оригинальной программе завода изготовителя позволяет подобрать конфигурацию и число каналов в ТПР для соблюдения гидравлического и температурного режимов по обоим контурам. Это очень важно в разветвленных системах теплоснабжения для обеспечения требуемого теплосъема в любой точке тепловой сети, независимо от ее температурных и гидравлических характеристик. В отличие от КТТО в ТПР можно реализовать значительно большие гидравлические перепады, что в свою очередь ведет к дополнительному уменьшению теплопередающей поверхности, а значит и стоимости аппарата в 1,5 — 3 раза.

Двухступенчатая система ГВС, реализованная в одном теплообменнике, позволяет значительно сэкономить на монтаже и уменьшить требуемые площади под индивидуальный тепловой пункт.

Источник: http://moglobi.ru/stati/plastinchatie-teploobmenniki-v-sistemah-otopleniya-i-goryacheg/main.html»

Системы поверхностного теплообмена: в чем преимущества и стоит ли их устанавливать?

При аналогичных параметрах, пластинчатые теплообменники в 6 раз меньше по габаритам и составляют 1/6 от веса трубчатых. Таким образом, экономятся площади под установку и снижаются начальные затраты. Конструкция трубчатого теплообменника обеспечивает гораздо меньшие коэффициенты теплопередачи, чем пластинчатого при аналогичной потере давления. Даже в самых лучших трубчатых аппаратах значительные поверхности труб находятся в мертвых зонах, где отсутствует теплопередача. В отличие от трубчатых, пластинчатые теплообменники могут быть легко разобраны для обслуживания и ремонта без демонтажа подводящих трубопроводов. Также для обслуживания пластинчатых теплообменников требуется площади в 6 раз меньше, чем для трубчатых.

Основные компоненты пластинчатых теплообменников

Вид пластинчатого теплообменника в разобранном виде

Пластинчатые теплообменники состоят:

1 Неподвижная плита

2 Верхняя штанга

3 Нажимная плита

5 Пластина с уплотнителем

6 Пакет пластин

7 Нижняя штанга

На рисунке для более ясного изображения потоков рабочих сред показаны только шесть пластин в раздвинутом положении. В рабочем положении пластины плотно прижаты друг к другу, и пространство канала, образующегося между пластинами, уплотнено резиновыми прокладками. Красная стрелка – греющая среда; синяя стрелка – нагреваемая среда.

Каждая пластина на лицевой стороне имеет резиновую контурную прокладку, ограничивающую канал для потока рабочей среды и охватывающая два угловых отверстия (по одной стороне пластины или диагонали), через которые проходит поток рабочей среды в межпластинный канал и выходит из него, а два других отверстия, изолированные дополнительно малыми кольцевыми прокладками, встречный теплоноситель проходит транзитом. Вокруг этих отверстий имеется двойная прокладка, которая гарантирует герметичность каналов. Она сконструирована таким образом, что в случае ее повреждения, протечки, связанные с отклонениями в технологическом процессе (например, резкое повышение давления в результате гидравлического удара), приводят к тому, что жидкость заполняет мертвое пространство, образуемое двойным уплотнением, с последующим выводом вытекающей жидкости наружу через дренажные каналы, делая таким образом утечку и ее источник видимыми, и позволяет заменить прокладку за короткое время.

Данная конструкция полностью исключает смешивание греющей и нагреваемой сред. Уплотнительные прокладки разборного теплообменника крепятся на пластине таким образом, что после сборки и сжатия пластины в аппарате образуют две системы герметичных межпластинных каналов, изолированных друг от друга металлической стенкой и прокладками: одна — для греющей среды. Другая – для нагреваемой. Обе системы межпластинных каналов соединены со своими коллекторами и далее со штуцерами для входа и выхода рабочих сред (теплоносителей), расположенными на неподвижных опорных плитах.

Нагреваемая среда входит в аппарат через штуцер. Расположенный на неподвижной плите и через верхнее угловое отверстие первой пластины попадает в продольный коллектор, образованный кромками пластин с угловыми отверстиями после их сборки. агреваемая среда по коллектору доходит до пластины, распределяется по межпластинным каналам, которые сообщаются (через один) с угловым коллектором, благодаря соответствующему расположению больших и малых резиновых прокладок.

При движении по межпластинному каналу нагреваемая среда обтекает волнистую поверхность пластин, обогреваемых с обратной стороны греющей средой. Нагреваемая среда затем попадает в продольный коллектор и выходит из аппарата через другой штуцер.

Греющая среда движется в аппарате навстречу нагреваемой и поступает в штуцер, проходит через нижний коллектор, распределяется по каналам и движется по ним. Через верхний коллектор и штуцер греющая среда выходит из теплообменника.

Основным узлом теплообменника является теплопередающая пластина. Общий вид пластины с прокладкой приведены на рисунке. Внешний вид («рисунок» пластины) — это визитная карточка любого теплообменника. «Рисунок» должен обеспечивать равномерное распределение потока по всей поверхности пластины, высокую турбулентность потока даже при малых его скоростях, и в то же время обеспечить необходимую жесткость пластины.

Пластины собираются в пакет таким образом, что каждая последующая пластина повернута на 180 о относительно смежных, что создает равномерную сетку пересечения и взаимных точек опор вершин гофр.

Между каждой парой пластин образуется щелевой канал сложной формы, по которым и протекает рабочая среда. Такие каналы получили наименование сетчато — поточных. Жидкость при движении в них совершает пространственное трехмерное извилистое движение, при котором происходит турбулизация потока.

Особенностью каналов является то, что суммарная площадь поперечного сечения межпластинного канала, перпендикулярного основному направлению движения потока жидкости, остается постоянной по всей длине пластины, за исключением участков входа и выхода. Расположение коллекторных отверстий для входа и выхода рабочей среды на углах пластины – одностороннее (левое или правое).

Вид гофрирования пластин и их количество, устанавливаемое в раму, зависят от эксплуатационных требований к пластинчатому теплообменнику. Пластины штампуются из коррозийно-стойкого листового металла, марок Aisi-316, Aisi-321, титан и другие. По контуру пластины расположен паз для резиновых уплотняющих прокладок. Угловые отверстия для прохода рабочей среды имеют форму, обеспечивающую снижение гидравлических сопротивлений на входе в канал и выходе из него, снижение отложений на этих участках и позволяющую более рационально использовать всю площадь пластины для теплообмена.

Преимущества применения и эксплуатации пластинчатых теплообменников

1. Экономичность и простота обслуживания. При засорении ПТО может быть разобран, промыт и собран двумя работниками невысокой квалификации в течении 4-6 часов. При обслуживании кожухогрубчатых теплообменников (КТТО) процесс очистки трубок часто ведет к их разрушению и закупорке.

2. Низкая загрязняемость поверхности теплообмена вследствие высокой турбулентности потока жидкости, образуемой рифлением, а также качественной полировки теплообменных пластин.

3. Срок эксплуатации первой выходящей из строя единицы уплотнительной прокладки достигает 10 лет. Срок работы теплообменных пластин 15-20 лет. Стоимость замены уплотнений от стоимости ПТО колеблется в пределах 15-25 %, что экономичнее аналогичного процесса замены латунной трубной группы в КТТО, составляющей 80-90% от стоимости аппарата.

4. Стоимость монтажа ПТО составляет 2-4 % от стоимости оборудования соответственно. Что ниже на порядок, чем у кожухотрубчатого теплообменника.

5. Даже теплоноситель с заниженной температурой в системах теплоснабжения позволяет нагревать воду в ПТО до требуемой температуры.

6. Индивидуальный расчет каждого ПТО по оригинальной программе завода-изготовителя позволяет подобрать его конфигурацию в соответствии с гидравлическим и температурным режимами по обоим контурам. Расчет производится в течении 1-2 часов.

7. Гибкость: в случае необходимости площадь поверхности теплообмена в пластинчатом теплообменнике может быть легко уменьшена или увеличена простым добавлением или убавлением пластин при необходимости.

8. Двухступенчатая система ГВС, реализованная в одном теплообменнике, позволяет значительно сэкономить на монтаже и уменьшить требуемые площади под индивидуальный тепловой пункт.

9. Конденсация водяного пара в ПТО снимает вопрос о специальном охладителе, т.к. температура конденсата может быть 50 °С и ниже.

10. Устойчивость к вибрациям: пластинчатые теплообменники высокоустойчивы к наведенной двухплоскостной вибрации, которая может вызвать повреждения трубчатого аппарата.

Вывод: применение нового технологичного оборудования позволяет наряду с экономией первоначальных затрат (20-30%) переходить на другие режимы работы. Достигается более эффективное использование источников энергии, повышение их КПД. Окупаемость перевооружения объектов в теплоэнергетике колеблется от 2 до 5 лет, а в некоторых случаях достигает нескольких месяцев.

C анализом российского рынка пластинчатых теплообменников Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков « Рынок пластинчатых теплообменников в России ».

Об авторе:
Академия Конъюнктуры Промышленных Рынков
оказывает три вида услуг, связанных с анализом рынков, технологий и проектов в промышленных отраслях — проведение маркетинговых исследований, разработка ТЭО и бизнес-планов инвестиционных проектов.
• Маркетинговые исследования
• Технико-экономическое обоснование
• Бизнес-планирование

Источник: http://www.newchemistry.ru/printletter.php?n_id=4319″

Изготовленный своими руками теплообменник будет служить «сердцем» системы отопления дома

Главным элементом любой из систем отопления служит особое устройство — теплообменник для отопления дома, в котором происходит передача тепла от генератора тепла к теплоносителю. На современном рынке представлено большое количество различных отопительных котлов, но все их разнообразие не ограничивает фантазию домашних умельцев по части самостоятельного изготовления подобных устройств. В нашей статье читателям будет предложено узнать, для чего нужен теплообменник в системе отопления, как его сделать своими руками и каким способом подключить.

В домашних отопительных системах воздух наиболее часто используются поверхностные теплообменники системы отопления, где тепловая энергия передается через поверхности металлических стенок данного устройства.

Принцип отопления через теплообменник наиболее полно реализован в конструкции газовых, твердотопливных или электрических котлов. Вода циркулирует по изогнутым в виде змеевика трубам, установленным внутри отопительного агрегата, и нагревается от температуры горящего топлива. Нагревшийся теплоноситель уходит в трубопровод отопительной системы, а ему на смену в теплообменник поступает остывшая вода из радиаторов.

До сих пор во многих индивидуальных домах традиционным источником тепла остается печь. Она хороша для обогрева небольшой избы, однако в условиях многокомнатного коттеджа ее тепловая мощность недостаточна. Поэтому в частном доме теплообменник в системе отопления нужен для того, чтобы превратить печку в полноценный водонагревательный котел. Размер и форма самодельного теплообменника для отопления должна вписываться в габариты топливной камеры печи. К этому устройству можно подключить трубопроводы и радиаторы, и тогда отопление дома станет более эффективным.

Более практичны водяные теплообменники для отопления. Это обусловлено тем, что вода намного лучше передает тепловую энергию, чем воздух. Вместе с тем, воздушный теплообменник для отопления также находит применение. Кроме водяного и воздушного, применяется также и теплообменник на дымоход для отопления, который устанавливают не внутрь, а снаружи.

Все выпускаемые промышленностью отопительные устройства оснащены теплообменниками, конструкция которых максимально приспособлена для эффективного нагрева воды.

В заводских условиях теплообменные устройства изготавливают из меди. Труба представляет собой змеевик, поперек изгибов которого расположено множество пластин, обеспечивающих большую площадь теплообмена.

Соорудить у себя дома самодельный теплообменник для отопления, чтобы он был точно как заводской, практически нереально. Поэтому придется выбрать вариант попроще.

Принцип действия самодельного теплообменника состоит в том, что печь передает ему энергию от сгорания дров или угля, а нагревшаяся вода расходится по трубам во все комнаты. Такой способ отопления позволяет обитателям дома наслаждаться равномерным распределением тепла. Кроме того, все помещения прогреваются гораздо быстрее, а расходы на приобретение топлива снижаются.

Усовершенствовать печное отопление частного дома можно двумя способами:

  • построить печь «с нуля» под конкретный размер теплообменника;
  • установить в существующую печь самодельный теплообменник, изготовленный по размерам топки.

Изготовив теплообменник для отопления своими руками, домовладелец может быть уверенным, что его печь с водяным контуром станет действовать не хуже настоящего твердотопливного котла. Отличие будет только в том, что у печки расположение входного отверстия теплообменника получится немного выше над полом, чем у заводских котлов. Это довольно существенная разница, которая может влиять на скорость естественной циркуляции теплоносителя.

Подключение теплообменника к системе отопления нужно сделать таким образом, чтобы труба поступления холодной воды (обратка) была расположена как можно ниже.

Так же, как в обычной системе отопления, в верхней точке трубопроводов нужно вмонтировать расширительный бачок. Он будет компенсировать изменение объема нагретой воды и выпускать из системы пузырьки воздуха. Если отопление через теплообменник с естественной циркуляцией окажется недостаточным для обогрева большого коттеджа, придется установить в систему циркуляционный насос.

Для присоединения самодельного теплообменника для отопления используют 2 штуцера: один снизу (вход холодной воды), другой сверху (выход горячей). При монтаже теплообменника нужно обеспечить необходимый уклон труб, как требуется по схеме.

Если разбираться, для чего нужен теплообменник в системе отопления, можно заметить несколько явных преимуществ:

  1. Простота изготовления. Если в доме уже существует печь, то придется потратиться только на изготовление самодельного теплообменника и монтаж системы отопления.
  2. Комбинированное отопление. Дополнительно к обогреву дома от поверхности печки прибавится водяная система отопления.
  3. Разнообразие видов топлива. Можно топить печь любыми твердыми энергоносителями, в отличие от котлов, ориентированных только на определенный вид топлива.
  4. Красивый внешний вид. Сохранить традиционный вид русской печи бывает полезно при создании интерьера в национальном стиле.

Среди недостатков отопления через теплообменник можно назвать: менее высокий КПД по сравнению с заводскими котлами и отсутствие автоматического контроля за интенсивностью нагрева теплоносителя.

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Если предполагается топить печь углём, лучше установить теплообменник из чугуна. Этот металл более крепкий, и стенки устройства долго не будут прогорать.

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Можно взять для примера какую-либо известную модель котла и в соответствии с его параметрами изготовить свой самодельный теплообменник.

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления. Обратим внимание и на другие сферы их применения.

Если охарактеризовать воздушную систему отопления, можно сказать, что у нее больше минусов, чем плюсов. Воздушные теплообменники для отопления мало распространены в частном жилом секторе, они пока еще не стали привычными.

Преимуществом этой системы называют возможность совмещать обогрев с принудительной вентиляцией. Однако возможные ошибки при ее проектировании и монтаже могут свести преимущества к минимуму. В воздуховодах бывает слышен шум вентилятора, а в помещениях ощущается температурный дисбаланс.

Теплообменники для воздушного отопления существуют прямого нагрева, а также косвенного. В первых из них газовое или дизельное топливо сгорает непосредственно в самом теплообменнике. В других моделях используется промежуточный теплоноситель.

На дачах и в банях у «народных умельцев» можно увидеть самодельный водяной или воздушный теплообменник, установленный на дымоход небольшой печи. Получается очень выгодно: тепло не уходит вместе с дымом, а часть его служит для нагрева воды.

Установив теплообменник на дымоход для отопления, можно получать довольно большое количество горячей воды. Конечно, этого не хватит, чтобы обогреть весь дом, но достаточно, чтобы поставить в предбаннике один-два радиатора. Использовать теплообменник на дымоход можно как для отопления, так и для быстрого нагрева воды в бане.

Подобное устройство может быть очень простым в изготовлении. За основу можно взять отрезок большой трубы диаметром 500–700 мм, или сварить бак из нержавейки. В центре конструкции будет проходить вертикальная труба, соответствующая диаметру дымохода, а сверху и снизу должны быть приварены два патрубка.

Отдавая свою температуру теплообменнику, выходящие из печи продукты сгорания быстро остывают. Из-за этого уменьшается тяга в дымоходе и несколько замедляется горение топлива.

Изготовление теплообменника для отопления своими руками может стать способом устроить в доме полноценное водяное отопление без приобретения дорогостоящего оборудования.

Источник: http://strojdvor.ru/otoplenie/izgotovlennyj-svoimi-rukami-teploobmennik-budet-sluzhit-serdcem-sistemy-otopleniya-doma/»

Процесс передачи тепла называют теплообменом. Аппараты, в которых происходит процесс – теплообменники. Если в процессе участвуют два агента, разделенные перегородкой – это поверхностные рекуперационные аппараты. Происходит процесс смешения теплого и холодного потока контактом – теплообменник смесительный.

Пример смесительного устройства – градирни. Отходящие газы отдают тепло воде, распыляемой из форсунок. В аппаратах, где два агента протекают по отдельным контурам, тепло передается через стенку, поверхность.

Признаком теплообменника является развитая поверхность и подводка двух систем. Это может быть пар-вода, антифриз-вода, вода-вода. Вместо воды в процессе используют химический раствор, вместо пара – нагретые газы.

Применение теплообменников позволяет:

  • Использовать остаточное тепло при получении электрической энергии.
  • Вести химические процессы в точном режиме, поддерживая температуру теплообменниками.
  • Использовать вторичное тепло от энергоносителя для бытовых нужд.
  • Поддерживать температуру теплоносителя для бытовых систем отопления в параметрах, соответствующих стандарту.

Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.

Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.

Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.

Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.

Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.

Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.

Поверхностный теплообмен происходит всегда через стенку. При этом возникают потери тепла. Чем тоньше перегородка, тем меньше потери. Новый т/о кожухотрубный имеет кпд 75%, но с зарастанием внутренней и верхней поверхности осадком, эффективность аппарата снижается. Он не может удерживать температурный режим. Поэтому аппараты имеют съемный пучок, который прочищают под высоким давлением специальным пистолетом.

Пластинчатые аппараты имеют кпд 90%, но щели между пластинами забиваются, требуется чистка. Для чистки оборудование разбирают. Важно установить на место сетчато-магнитный фильтр, который препятствует образованию осадка. Пластинчатые теплообменники можно подключать к автоматизированному управлению.

Эффективность процесса зависит от схемы подключения. Полнее теплоотдача у противоточного аппарата, когда потоки движутся навстречу друг другу.

Чем тоньше перегородка, тем лучше идет процесс. Но для аппаратов, работающих под давлением, толщина стенок зависит от способности выдерживать нагрузки на стенки. Если нельзя утоньшить стенки трубок необходимо увеличить поверхность нагрева, сделать аппарат длиннее.

Каждый т/о изготовлен в соответствии с теплотехническим расчетом, имеет паспорт и рассчитан для работы с определенным теплоносителем.

Зачем нужен теплообменник в системе отопления в быту, понятно. Какой аппарат подходит в конкретном контуре – зависит от условий монтажа. Можно поставить кожухотрубный т/о – он неприхотлив, может простоять без чистки 10 лет, только счета за использование теплоносителя будут все больше – нарушается теплопроводность. Можно поставить пластинчатый, но чистить его придется через 3 года.

Источник: http://www.npommz.ru/blog/chto-takoe-teploobmennik-zachem-on-nuzhe»

Теплообменный аппарат. Виды теплообменных аппаратов. Классификация теплообменных аппаратов

Каждый из нас сталкивался с простейшими теплообменниками. Ярким тому примером служит конструкция «труба в трубе» или что-то в этом роде. Сложно было бы представить нашу жизнь, если бы не был изобретен теплообменный аппарат. На сегодняшний день есть огромное количество теплообменников. Между собой они отличаются не только техническими характеристиками, но и сферой применения, дизайном и т. п. Давайте более подробно поговорим на данную тему и разберемся с интересными моментами.

Теплообменный аппарат – это устройство, которое используется для передачи тепла из одной среды в другую. При этом нужно понимать, что сам по себе теплообменник, без отопительного оборудования, совершенно бесполезен, а вот в комплексе можно получить замечательные результаты и успешно обогревать даже очень большие и холодные помещения. Кроме того, ученые постоянно пытались максимально сократить потери тепла при его передаче в другую среду. На сегодняшний день нельзя похвастаться 100% эффективностью, но о КПД 90-95% можно говорить смело. Эксплуатационные, а также технические характеристики изделия повышаются за счет использования специально подготовленных материалов, а также теплоносителя. Конечно, все это несколько увеличивает цену на оборудование, но оно того стоит.

При проектировании инженеры постоянно сталкиваются с противоречивыми требованиями, которые необходимо объединить в один флакон. К примеру, нужно снизить гидравлическое сопротивление и при этом повысить коэффициент теплопередачи. Теплообменный аппарат должен быть устойчивым к коррозии, но при этом не слишком сложным для обслуживания. Все это привело к тому, что появилось много видов теплообменников. В зависимости от ситуации используется тот, который лучше подходит.

Как было отмечено выше, в настоящее время есть огромное количество теплообменников. Прежде всего, их необходимо разделять по способу передачи тепла к среде. Тут теплообменники делятся на следующие группы:

  • рекуперативные;
  • регенеративные;
  • смесительные;
  • с электрическим подогревом.

Давайте поближе рассмотрим рекуперативные теплообменники. Конструкция изделия подразумевает наличие однослойной или многослойной стенки, через которую передается тепло. Обычно это происходит уже в установившемся движении. Интересно то, что в такого рода аппаратах передача тепла осуществляется при вынужденном движении без изменения фазового состояния. Но это касается только постоянно действующих теплообменников. Если же говорить об агрегатах с периодическим режимом работы, то за определенный отрезок времени осуществляется нагрев, испарение, а также охлаждение, и все это в последовательном режиме. Такие аппараты относятся к теплообменникам с неустановившимся тепловым движением. Это обусловлено тем, что температура теплоносителя на входе и на выходе существенно отличается. Нередко такие агрегаты встречаются в виде змеевиков и бывают пластинчатыми, ребристыми и других форм. Немного позже мы рассмотрим несколько видов. Но на этом классификация теплообменных аппаратов не заканчивается.

В этом случае, точно так же как и в предыдущем, для передачи тепловой энергии используется поверхность теплообмена. Однако данная поверхность является своего рода насадкой. Она выполняет роль промежуточного аккумулятивного средства, которое накапливает теплоту. По большому счету весь процесс можно разделить на несколько стадий. На первом этапе насадка воспринимает определенное количество тепла. Потом идет переход ко второй стадии, и теплоноситель передается по поверхности насадки. Это случается при смене потоков теплоносителей. На этом этапе насадка постепенно охлаждается, а накопленное тепло отдается в нагреваемую среду, которой может являться ваша комната.

Регенераторы относятся к нестационарным агрегатам. Насадка зачастую неподвижная, а тепловые процессы – синхронно повторяющиеся. Устройства такого типа нередко называются скруберрами или градирнями.

Суть теплообменников с электрическим подогревом заключается в том, что в качестве основного источника тепла используется электроэнергия. Для преобразования электрической энергии в тепловую используются электродуговые установки. Они могут быть как прямого, так и косвенного нагрева. Наиболее распространенные теплообменники в промышленности – индукционные и нагреватели сопротивления. Как вы видите, теплообменное оборудование может быть разным, сейчас мы подробно рассмотрим каждый вид, сферу его применения и конструкционные особенности.

Аппарат представляет собой пару спиральных каналов. Обычно они навиваются вокруг центральной перегородки. Для этого их изготавливают из рулонного материала. Стоит отметить, что спиральные теплообменники хорошо подходят для нагрева и охлаждения жидкостей, имеющих высокий коэффициент вязкости.

По большому счету поверхность нагрева образуется двумя листами из металла, которые посредством сварного шва присоединяются к керну. Сам агрегат состоит всего из 2-х каналов, обычно прямоугольного сечения, выполненных в виде спирали. Конец спирали (внутренний) имеет разделительную перегородку и фиксируется с помощью штифтов. Теплообменники могут изготавливать как вертикальными, так и горизонтальными. Если не получается установить один вид ввиду недостаточного количества места или сложной конфигурации помещения, то используется второй, более предпочтительный. Интересно еще и то, что потребитель может выбирать спиральные теплообменники с разной шириной спирали, от 20 до 150 сантиметров. При этом поверхность нагрева может изменяться от 3,2 до 100 метров квадратных с максимальным давлением системы в 1 МПа.

Нельзя не отметить, что данное теплообменное оборудование обладает целым рядом существенных преимуществ. Во-первых, это пониженное гидравлическое сопротивление. Во-вторых, компактность и высокая эффективность и интенсивность теплообмена. Но все это способствовало тому, что возникли недостатки в виде сложной конструкции и ремонта.

В настоящее время изготавливаются разборные и неразборные пластинчатые теплообменники. Естественно, что первый вид более предпочтителен ввиду множества причин. Во-первых, это простота обслуживания. Такое оборудование очень быстро разбирается и собирается, поэтому любая поломка устраняется за небольшое время. Неразборные модели обычно не ремонтируют, а если это и делается, то куда дольше.

Собственно, название говорит о том, что данное оборудование состоит из пакета сборных пластин. Они могут изготавливаться из различного материала, такого как медь, титан, графит и т. п. Практически всегда для улучшения эксплуатационных свойств пластины изготавливаются гофрированными. В пластинчатых теплообменниках потоки холодного и горячего теплоносителя проходят слоями.

Само по себе оборудование хорошо тем, что имеет грамотную компоновку. Это позволило увеличить площадь теплообменной поверхности и все это вместить в относительно небольшие габариты. В любом случае перед покупкой проводится расчет теплообменных аппаратов, который позволяет получить данные о том, какой мощности устройство необходимо в конкретном случае. Нужно понимать, что все пластины, которые стянуты в пакет, за счет одинаковой формы образуют между собой каналы. Через них протекает жидкость. Ну а сейчас мы рассмотрим еще несколько интересных деталей, которые касаются данного оборудования.

Как уже было отмечено выше, основным элементом теплообмена служат пластины. Они изготавливаются холодным штампованием. Для этого используются коррозионно стойкие сплавы, что позволяет значительно повысить долговечность и эффективность агрегата. Толщина пластин в зависимости от модели может колебаться от 0,4 до 1,0 мм. В рабочем положении пластины плотно прижимаются одна к другой. При этом образуются небольшие щелевые каналы. На лицевой стороне есть специальная канавка, туда устанавливается резиновая прокладка (уплотнитель). Кроме того, в прокладках имеются отверстия, которые необходимы для подвода и отвода жидкости. На случай прорыва одного из отверстий предусмотрена система дренажных пазов, исключающая смешивание холодных и горячих сред.

За счет создания противотока между двумя средами удалось добиться не только улучшения температурного набора, но и более быстрой теплоотдачи при относительно небольших гидравлических сопротивлениях. Не лишним будет сказать о том, что основной принцип действия основан на противотоке, то есть движении греющей и нагревающей жидкости в разные стороны. Для исключения смешивания устанавливается двойной резиновый уплотнитель или же металлическая пластина. Количество пластин и каналов может отличаться в зависимости от эксплуатационных требований, предъявляемых к оборудованию. Перед созданием проводится тепловой расчет теплообменных аппаратов, что позволяет определить оптимальный режим работы. Иногда используются дорогостоящие сплавы, которые не боятся длительной эксплуатации в агрессивной среде.

ПРТ используются для передачи тепла в неагрессивных и газовых средах в широком диапазоне температур, от -270 до +200 градусов по Цельсию. При этом давление в системе может достигать 100 атмосфер и начинаться с вакуума. В конструкции лежит идея о нанесении ребристой поверхности по обе стороны пластин. Само изделие состоит из нескольких ребер, благодаря которым и осуществляется теплопередача между средами. Стоит заметить, что именно ребристо-пластинчатый теплообменный аппарат обладает большим разнообразием форм ребер. Это позволяет несколько изменять эксплуатационные и технические характеристики. Чаще всего можно увидеть непрерывные и волнистые ребра. Но помимо этих, встречаются и более экзотические, такие как перфорированные и чешуйчатые. В качестве материала обычно используют тонколистовые металлы. Их толщина регулируется в зависимости от давления в системе и используемой жидкости.

Нередко такие типы теплообменных аппаратов изготавливают с различными видами движения потоков. Чаще всего используется противоток, но имеют место и прямоточные, и перекрестные схемы. Если же вкратце говорить о сильных сторонах такого оборудования, то их очень много. Во-первых, это эксплуатационные свойства, такие как быстрый и интенсивный теплообмен. Во-вторых, это небольшие габариты. Сегодня многие говорят о том, что именно ребристые теплообменники являются наиболее совершенными. Наиболее часто ПРТ применяют в таких отраслях, как энергетика, нефтеперерабатывающая, химическая и авиационная отрасль промышленности. Все это обусловлено большим количеством достоинств, а также широким диапазоном используемых жидкостей и давлений в системе.

Теплообменник кожухотрубный: конструкция и особенности

Теплообменное оборудование поверхностного типа, которое мы уже рассмотрели, является не таким популярным, как кожухотрубные агрегаты. Это как раз те аппараты, о которых было сказано в самом начале, в простейшем исполнении — это система «труба в трубе». Теплообменник такого типа представляет собой систему (пучок) трубок, которые помещаются в кожух. Трубки завальцовывают и приваривают к корпусу изделия. В некоторых случаях их дополнительно обваривают. Это делается для обеспечения 100% герметичности. Корпус снабжается дополнительными патрубками. Одни нужны для подвода пара, другие — для отвода конденсата. Помимо этого, в корпусе имеются поперечные решетки, которые используются для поддержки теплообменных трубок по всей длине агрегата. Интересно то, что кожухотрубчатые теплообменные аппараты используются при температурах от 190 градусов по Цельсию или давлениях насыщенного пара более 15 Бар.

Любая система, подразумевающая движение жидкости, может быть подвержена гидроударам. Это явление способно частично или полностью вывести оборудование из рабочего состояния. Чтобы этого не случилось, используют различного рода накопительные элементы, так называемые расширительные бачки. Но в нашем случае этого не нужно, ведь кожухотрубчатые теплообменники к ним весьма устойчивы. Помимо этого, не выдвигается жестких требований к чистоте среды. Существенный минус такого оборудования заключается в том, что все виды теплообменных аппаратов данного типа очень металлоемкие, что влияет на конечную стоимость и габариты.

Не секрет, что любой твердотопливный или газовый котел имеет в своей конструкции теплообменник, они еще называются калориферами. Основные виды мы уже с вами рассмотрели. Как вы наверняка заметили, те или иные типы используются в различных отраслях промышленности. Какие-то аппараты нашли более широкое применение, другие используются в отдельных отраслях и не подходят под другие. В нашем же случае имеет место применение трубчатых и пластинчатых теплообменников. В первом случае мы имеем дело с системой трубок, во втором – пластин. В принципе, независимо от вида, теплообменник для газовой колонки должен отвечать ряду требований. Во-первых, обладать высоким коэффициентом теплопередачи, во-вторых, быть долговечным и устойчивым к высоким температурам. Наиболее популярными материалами являются медь, алюминий и сталь. Последний вариант менее предпочтителен, так как такой металл имеет большой вес, что понижает КПД. При любом раскладе теплообменник для газовой колонки должен служить не менее 5 лет.

Вот мы и рассмотрели с вами основные типы теплообменников. Без внимания остались такие виды, как кожухопластинчатые. В принципе, они незначительно отличаются от классических пластинчатых или ребристых. Но нередко можно найти печи для бани с теплообменником, имеющим кожух. Однако ключевой особенностью является то, что оборудование устойчиво к высоким температурам и рабочим давлениям. Корпус при этом может быть изготовлен из таких материалов, как титан, нержавеющая или углеродистая сталь. Интересно то, что печи для бани с теплообменником кожухопластинчатым хорошо регулируются по пару или же конденсату, что, бесспорно, является весомым достоинством. В принципе, на этом можно завершать рассказ, так как теперь вы знаете о теплообменниках все, что нужно.

Источник: http://fb.ru/article/175125/teploobmennyiy-apparat-vidyi-teploobmennyih-apparatov-klassifikatsiya-teploobmennyih-apparatov»

Теплообменный аппарат. Виды, устройство, классификация теплообменников.

Теплообменный аппарат (теплообменник) — это устройство, в котором осуществляется теплообмен между двумя или несколькими средами. Устройства, в которых между средами происходит массообмен, называют массообменными аппаратами. Аппараты, в которых одновременно протекают тепло- и массообмен, называют тепломассообменными. Движущиеся среды, обменивающиеся теплотой или применяемые для передачи теплоты от более нагретых тел и веществ к менее нагретым, называют теплоносителями.

Наибольшее распространение в тепломассообменных и теплотехнологических установках получили следующие процессы: нагревание, охлаждение, конденсация, выпаривание, сушка, дистилляция, плавление, кристаллизация, затвердевание. По потенциалу теплоносителя теплотехническое оборудование можно разделить на низкотемпературное, среднетемпературное и высокотемпературное. К высокотемпературным установкам относятся промышленные печи, им соответствуют рабочие температуры в пределах 400. 2000 °С. Низко- и среднетемпературное оборудование представляет собой теплообменные аппараты, установки для тепловлажностной обработки и сушки материалов и изделий, установки утилизации тепла и пр. Рабочий диапазон среднетемпературных процессов и установок находится, как правило, в пределах 150. 700 °С. Процессы с более низкими температурами, до -150 °С, называют криогенными.

Изучение тепло- и массообменных процессов и установок дает возможность правильно осуществлять выбор теплоиспользующего оборудования для решения вопросов по экономии энергоресурсов на промышленных объектах, а это является одной из задач в работе инженера-энергетика.

1. Классификация теплообменного оборудования предприятий

Теплообменными аппаратами называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами. Последние принято называть теплоносителями. Теплообменные аппараты различают по назначению, принципу действия, фазовому состоянию теплоносителей, конструктивным и другим знакам [3].

По назначению теплообменные аппараты делятся на подогреватели, испарители, конденсаторы, холодильники и т. д.

По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.

Рекуперативными называются такие аппараты, в которых тепло от горячего теплоносителя к холодному передается через разделяющую их стенку. Примером таких аппаратов являются паровые котлы, подогреватели, конденсаторы и др.

Регенеративными называются такие аппараты, в которых одна и та же поверхность нагрева омывается то горячим, то холодным теплоносителем. При протекании горячей жидкости тепло воспринимается стенками аппарата и в них аккумулируется, при протекании холодной жидкости это аккумулированное тепло ею воспринимается. Примером таких аппаратов являются регенераторы мартеновских и стеклоплавильных печей, воздухоподогреватели доменных печей и др.

В рекуперативных и регенеративных аппаратах процесс передачи тепла неизбежно связан с поверхностью твердого тела. Поэтому такие аппараты называются также поверхностными.

В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.

Если участвующие в тепломассообмене горячий и холодный теплоносители перемещаются вдоль поверхности нагрева в одном и том же направлении, тепломассообменный аппарат называют прямоточным, при встречном движении теплоносителей и сред — противоточным, а при перекрестном движении — перекрестноточным. Перечисленные схемы движения теплоносителей и сред в аппаратах называют простыми. В том случае, когда направление движения хотя бы одного из потоков по отношению к другому меняется, говорят о сложной схеме движения теплоносителей и сред.

В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться: водяной пар, горячая вода, дымовые и топочные газы, высокотемпературные и низкотемпературные теплоносители.

Водяной пар как греющий теплоноситель получил большое распространение вследствие ряда своих достоинств:

1. Высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена.

2. Большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое его массовое количество для передачи сравнительно больших количеств теплоты.

3. Постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянный режим и регулировать процесс в аппаратах.

Основным недостатком водяного пара является значительное повышение давления в зависимости от температуры насыщения.

Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа. Теплообменники с паровым обогревом для высоких температур получаются очень тяжелыми и громоздкими по условиям обеспечения прочности, имеют толстые фланцы и стенки, весьма дороги и поэтому применяются редко.

Горячая вода получила большое распространение в качестве греющего теплоносителя, особенно в системах отопления и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах или водонагревательных установках ТЭЦ и котельных. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи

Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного обогрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при взаимодействии с сажей и золой.

Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур. Однако оно не всегда может быть использовано вследствие трудности регулировки и возможности перегрева материала. Высокая температура топочных газов приводит к большим тепловым потерям. Газы, покидающие топку с температурой выше 1000 °С, доходят до потребителя с температурой не выше 700 °С, так как осуществить удовлетворительную термоизоляцию при таком высоком уровне температур достаточно трудно.

К недостаткам дымовых и топочных газов при использовании их в качестве теплоносителя можно отнести следующее:

1. Малая плотность газов, которая влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, что приводит к созданию громоздких трубопроводов.

2. Вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой; последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов. Прокладка таких газопроводов, а также создание запорных и регулирующих приспособлений по тракту течения газа связаные с большими трудностями.

3. Вследствие низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.

К высокотемпературным теплоносителям относятся: минеральные масла, органические соединения, расплавленные металлы и соли. Низкотемпературные теплоносители — это вещества, кипящие при температурах ниже 0 °С. К ним относят: аммиак, двуокись углерода, сернистый ангидрид, фреоны.

Рекуперативные теплообменные аппараты — это установки, работающие в периодическом или в стационарном тепловом режиме. Аппараты периодического действия обычно представляют собой сосуды большой вместимости, которые через определенные промежутки времени заполняют обрабатываемым материалом или одним из теплоносителей, нагревают или охлаждают его, а затем удаляют. В стационарном режиме работают, как правило, аппараты непрерывного действия. Конструкции современных рекуперативных теплообменных аппаратов весьма разнообразны и предназначены для работы с теплоносителями типов жидкость-жидкость, пар-жидкость, газ-жидкость.

Значительно чаще используются теплообменные аппараты непрерывного действия, среди которых наибольшее распространение получили кожухотрубчатые теплообменники (рис. 1). Кожухотрубные теплообменники представляют собой аппараты, выполненные из пучков труб, скрепленных при помощи трубных решеток и ограниченных кожухами и крышками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них разделено перегородками на несколько ходов.

В кожухотрубчатых теплообменниках обычно применяют трубы внутренним диаметром не менее 12 мм и не более 38 мм, так как при увеличении диаметра труб значительно снижается компактность теплообменника и возрастает его металлоемкость.

Длина трубного пучка колеблется от 0,9 до 5. 6 м. Толщина стенки труб — от 0,5 до 2,5 мм. Трубные решетки служат для закрепления в них труб при помощи развальцовки, запайки или сальниковых соединений. Кожух аппарата представляет собой цилиндр, сваренный из одного или нескольких стальных листов. Он снабжен фланцами, к которым болтами крепятся крышки. Толщина стенки кожуха определяется максимальным давлением рабочей среды и диаметром аппарата, но не делается тоньше 4 мм. Из-за различия температур греющей и нагреваемой сред кожух и трубы работающего аппарата также имеют различные температуры. Для компенсации напряжений, возникающих в результате различия температурных расширений труб и кожуха, применяют линзовые компенсаторы, U- и W-образные трубы, теплообменники с плавающими камерами (рис. 1).

Рис. 1. Кожухотрубчатые рекуперативные теплообменные аппараты: а, б — с жестким креплением труб в трубных решетках; в — с линзовыми компенсаторам корпусе; г, д — с U- и W-образными трубками; е — с нижней плавающей распределительной камерой

С целью интенсификации теплообмена увеличивают скорость теплоносителей с низким коэффициентом теплоотдачи, для чего теплообменники по теплоносителю, проходящему в трубах, делают двух-, четырех- и многоходовыми, а в межтрубном пространстве устанавливают сегментные или концентрические поперечные перегородки (рис. 1).

Если перепады давления между греющей и нагреваемой средами в аппарате достигают 10 МПа и более, применяют змеевиковые теплообменники с витыми трубами (рис. 2, а), концы которых вваривают в распределительные коллекторы или в меньшие по размерам, чем в кожухотрубных аппаратах, трубные решетки. Эти аппараты более компактны, а также позволяют обеспечить более высокие скорости и коэффициенты теплоотдачи от теплоносителя, движущегося в трубах, в случае малых его расходов.

Рис. 2. Змеевиковые и секционные рекуперативные теплообменные аппараты: а — с витой трубчатой поверхностью нагрева (змеевиковый); б — секционный; в — «труба в трубе»

Секционные теплообменники (рис. 2, б), как и кожухотрубчатые, применяют в самых различных областях. Они характеризуются меньшим, чем в кожухотрубчатых аппаратах, различием скоростей в межтрубном пространстве и в трубах при равных расходах теплоносителей. Из них удобно подбирать необходимую площадь поверхности нагрева и изменять ее в случае необходимости. Однако у секционных теплообменников велика доля дорогостоящих элементов — трубных решеток, фланцев, переходных камер, калачей, компенсаторов и т. п.; выше расход металла на единицу поверхности нагрева, больше длина пути теплоносителей, а следовательно, больше расход электроэнергии на их прокачку. В случае малых тепловых мощностей секции выполняют по типу теплообменников «труба в трубе», у которых в наружную трубу вставлена единственная внутренняя труба меньшего диаметра (рис. 2, в).

Разборные многопоточные теплообменники «труба в трубе» нашли применение в технологических установках заводов нефтяной, химической, газовой и других отраслей промышленности при температурах от — 40 до +450 °С и давлениях до 2,5. 9,0 МПа. Для улучшения теплообмена трубы могут иметь продольные ребра или поперечную винтовую накатку.

Спиральные теплообменники—аппараты, в которых каналы для теплоносителей образованы двумя свернутыми в спирали на специальном станке листами (рис. 3). Расстояние между ними фиксируется приваренными бобышками или штифтами. В соответствии с ГОСТ 12067—80 навивку спиральных теплообменников производят из рулонной стали шириной от 0,2 до 1,5 м с поверхностями нагрева от 3,2 до 100 м2 при расстоянии между листами от 8 до 12 мм и толщине стенок 2 мм для давления до 0,3 МПа и 3 мм — до 0,6 МПа. Зарубежные фирмы изготовляют специальные теплообменники из рулонного материала (углеродистых и легированных сталей, никеля, титана, алюминия, их сплавов и некоторых других) шириной от 0,1 до 1,8 м, толщиной от 2 до 8 мм при расстоянии между листами от 5 до 25 мм. Поверхности нагрева составляют от 0,5 до 160 м2.

Рис. 3. Спиральный теплообменник: а — принципиальная схема спирального теплообменника; б — способы соединения спиралей с торцевыми крышками

Спиральные теплообменники устанавливают по штуцерам горизонтально и вертикально. Их часто монтируют блоками по два, четыре, восемь аппаратов и применяют для нагревания и охлаждения жидкостей и растворов. Вертикальные аппараты используют также для конденсации чистых паров и паров из парогазовых смесей. В последнем случае на коллекторе для конденсата имеется штуцер для удаления неконденсирующегося газа.

Пластичные теплообменники (рис. 4, а, б) имеют щелевидные каналы, образованные параллельными пластинками. В простейшем случае пластины могут быть плоскими. Для интенсификации теплообмена и повышения компактности пластинам при изготовлении придают различные профили (рис. 4, в, г), а между плоскими пластинами помещают профилированные вставки. Первые профилированные пластины изготовлялись из бронзы фрезерованием и отличались повышенной металлоемкостью и стоимостью. В настоящее время пластины штампуют из листовой стали (углеродистой, оцинкованной, легированной), алюминия, мельхиора, титана и других металлов и сплавов. Толщина пластин — от 0,5 до 2 мм. Поверхность теплообмена одной пластины — от 0,15 до 1,4 м2, расстояние между пластинами — от 2 до 5 мм.

Рис. 4. Пластинчатые теплообменники: а — пластинчатый воздухоподогреватель; б — разборный пластинчатый теплообменник для тепловой обработки жидких сред; в — гофрированные пластины; г — профили каналов между пластинами; I, II — вход и выход теплоносителя

В разборных аппаратах герметизацию каналов обеспечивают с помощью прокладок на основе синтетических каучуков. Их целесообразно применять при необходимости чистки поверхностей с обеих сторон. Они выдерживают температуры в диапазоне от -20 до 140. 150 °С и давления не более 2. 2,5 МПа. Неразборные пластинчатые теплообменники выполняют сварными. Они могут работать при температурах до 400 °С и давлениях до 3 МПа. Из попарно сваренных пластин изготовляют полуразборные теплообменники. К аппаратам этого же типа относятся блочные, которые набирают из блоков, образованных несколькими сваренными пластинами. Пластинчатые теплообменные аппараты применяют для охлаждения и нагревания жидкостей, конденсации чистых паров и паров из парогазовых смесей, а также в качестве греющих камер выпарных аппаратов.

Ребристые теплообменники (рис. 5) применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоносителей значительно ниже, чем для второго. Поверхность теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи увеличивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. Из рис. 5 (е. и) видно, что ребристые теплообменники изготовляют самых различных конструкций. Ребра выполняют поперечными, продольными, в виде игл, спиралей, из витой проволоки и т. д.

Трубы с наружным и внутренним продольным оребрением изготовляют методами литья, сварки, вытяжкой из расплава через фильеру, выдавливанием металла, нагретого до пластического состояния, через матрицу. Для закрепления ребер на трубах и пластинах используют также гальванические покрытия, покраску. Для повышения эффективности ребер их изготовляют из более теплопроводных, чем стальные трубы, материалов: меди, латуни, чаще из алюминия. Однако из-за нарушения контакта между ребром или ребристой рубашкой и стальной несущей трубой биметаллические трубы применяют при температурах не выше 280 °С, трубы с навивным оребрением — до 120 °С; навивные завальцованные в канавку ребра выдерживают температуру до 330 °С, но быстро корродируют у основания в загрязненном воздухе и других агрессивных газах.

Рис. 5. Типы ребристых теплообменников: а — пластинчатый; б — чугунная трубка с круглыми ребрами; в — трубка со спиральным оребрением; г — чугунная трубка с внутренним оребрением; д — плавниковое оребрение трубок; е — чугунная трубка с двухсторонним игольчатым оребрением; ж — проволочное (биспиральное) оребрение трубок; з — продольное оребрение трубок; и — многоребристая трубка

Для повышения эффективности теплотехнологических систем, работающих в широком интервале перепадов температуры между теплоносителями, часто оказывается целесообразным применение регенеративных теплообменных аппаратов.

Регенеративным теплообменным аппаратом называют устройство, в котором передача теплоты от одного теплоносителя к другому происходит с помощью теплоаккумулирующей массы, называемой насадкой. Насадка периодически омывается потоками горячего и холодного теплоносителей. В течение первого периода (периода нагревания насадки) через аппарат пропускают горячий теплоноситель, при этом отдаваемая им теплота расходуется на нагревание насадки. В течение второго периода (периода охлаждения насадки) через аппарат пропускают холодный теплоноситель, который нагревается за счет теплоты, аккумулированной насадкой. Периоды нагревания и охлаждения насадки продолжаются от нескольких минут до нескольких часов.

Для осуществления непрерывного процесса теплопередачи от одного теплоносителя к другому необходимы два регенератора: в то время, когда в одном из них происходит охлаждение горячего теплоносителя, в другом нагревается холодный теплоноситель. Затем аппараты переключаются, после чего в каждом из них процесс теплопередачи протекает в обратном направлении. Схема соединения и переключения пары регенераторов приведена на рис. 6.

Рис. 6. Схема регенератора с неподвижной насадкой: I — холодный теплоноситель, II — горячий теплоноситель

Переключение производится поворотом клапанов (шиберов) 1 и 2. Направление движения теплоносителей показано стрелками. Обычно переключение регенераторов производится автоматически через определенные промежутки времени.

Из применяемых в технике регенераторов можно выделить конструкции аппаратов, работающих в областях высоких, средних и очень низких температур. В металлургической и стеклоплавильной промышленности применяют регенераторы с неподвижной насадкой из огнеупорных кирпичей. Воздухонагреватели доменных печей выделяются своими размерами. Два или несколько совместно работающих таких воздухонагревателя имеют высоту до 50 м и диаметр до 11 м, они могут нагревать до 1300 °С примерно 500 000 м3/ч воздуха. На рис. 7, а представлен продольный разрез воздухонагревателя доменной печи с кирпичной насадкой. В камере сгорания сжигают горючие газы. Продукты сгорания поступают в воздухонагреватель сверху и, двигаясь вниз, нагревают насадку, а сами при этом охлаждаются и выходят снизу. После переключения шибера воздух движется снизу вверх через насадку в обратном направлении и при этом нагревается. Другим примером высокотемпературного регенератора является воздухонагреватель сталеплавильной печи (рис. 7, б). Г азообразное (жидкое) топливо и воздух перед подачей в печь нагреваются за счет теплоты продуктов сгорания.

Рис. 7. Некоторые типы регенераторов: а — схема мартеновской печи с регенераторами: 1 — шибер; 2 — горелки; 3 — насадка; б — воздухоподогреватель доменной печи: 1 — теплоаккумулирующая насадка; 2 — камера сгорания; 3 — выход горячего дутья; 4 — вход воздуха в камеру сгорания; 5 — вход горячего газа; 6 — вход холодного дутья; 7 — уходящие газы; в — регенеративный аппарат системы Юнгстрема; г — схема регенератора с падающей насадкой

Теплообменники, работающие при высоких температурах, обычно изготовляют из огнеупорного кирпича. Недостатками регенераторов с неподвижной кирпичной насадкой являются громоздкость, усложнение эксплуатации, связанное с необходимостью периодических переключений регенераторов, колебания температуры в рабочем пространстве печи, смещение теплоносителей во время переключения шибера.

Для среднетемпературных процессов в технике используют воздухонагреватели непрерывного действия с вращающимся ротором системы Юнгстрема (рис. 7, в). Регенеративные вращающиеся подогреватели (РВП) применяют на электростанциях в качестве воздухонагревателей для использования теплоты дымовых газов, выходящих из котлов. В качестве насадки в них используют плоские или гофрированные металлические листы, прикрепленные к валу. Насадка в виде ротора вращается в вертикальной или горизонтальной плоскости с частотой 3. 6 об./мин и попеременно омывается то горячими газами (при этом нагреваясь), то холодным воздухом (при этом охлаждаясь). Преимуществами РВП перед регенераторами с неподвижной насадкой являются: непрерывный режим работы, практически постоянная средняя температура нагреваемого воздуха, компактность, недостатками — дополнительный расход электроэнергии, сложность конструкции и невозможность герметичного отделения полости нагрева от полости охлаждения, поскольку через них проходит одна и та же вращающаяся насадка.

В тепломассообменных аппаратах и установках контактного (смесительного) типа процессы тепло- и массообмена протекают при непосредственном соприкосновении двух и более теплоносителей.

Тепловая производительность контактных аппаратов определяется поверхностью соприкосновения теплоносителей. Поэтому в конструкции аппарата предусматривается разделение потока жидкости на мелкие капли, струи, пленки, а газового потока — на мелкие пузырьки. Передача теплоты в них происходит не только путем кондуктивной теплопередачи, но и путем обмена массой, причем при массопередаче возможен даже переход теплоты от холодного теплоносителя к горячему. Например, при испарении холодной воды в горячем газе теплота испарения переносится от жидкости к газу.

Контактные теплообменники нашли широкое применение для конденсации паров, охлаждения газов водой, нагревания воды газами, охлаждения воды воздухом, мокрой очистки газов и т. п.

По направлению потока массы контактные теплообменники могут быть разделены на две группы:

1) аппараты с конденсацией пара из газовой фазы. При этом происходят осушка и охлаждение газа и нагревание жидкости (конденсаторы, камеры кондиционеров, скрубберы);

2) аппараты с испарением жидкости в потоке газа. При этом увлажнение газа сопровождается его охлаждением и нагреванием жидкости или его нагреванием и охлаждением жидкости (градирни, камеры кондиционеров, скрубберы, распылительные сушилки).

По принципу диспергирования жидкости контактные аппараты могут быть насадочными, каскадными, барботажными, полыми с разбрызгивателями и струйными (рис. 8).

Каскадные (полочные) аппараты применяются преимущественно в качестве конденсаторов смещения (рис. 8, а). В полом вертикальном цилиндре установлены на определенном расстоянии одна от другой (350. 550 мм) плоские перфорированные полки в виде сегментов. Охлаждающая жидкость подается в аппарат на верхнюю полку. Основная масса жидкости вытекает через отверстия в полке тонкими струями, меньшая ее часть переливается через борт на нижележащую полку.

Пар для конденсации подается через патрубок в нижней части конденсатора и движется в аппарате противотоком к охлаждающей жидкости. Жидкость вместе с конденсатом выводится через нижний патрубок аппарата и барометрическую трубу, а воздух отсасывается через верхний патрубок вакуум-насосом. Кроме сегментных полок в барометрических конденсаторах применяются кольцевые, конические и иной формы полки.

Барботажные аппараты (рис. 8, б) отличаются простотой конструкции, их применяют для нагревания воды паром, выпаривания агрессивных жидкостей и растворов, содержащих шламы, взвеси и кристаллизующиеся соли, горячими газами и продуктами сгорания топлива. Принцип работы барботажных подогревателей и испарителей состоит в том, что перегретый паp или горячие газы, поступающие в погруженные барботеры, диспергируются в пузырьки, которые при всплытии отдают теплоту жидкости и одновременно насыщаются водяным паром. чем больше пузырьков образуется в растворе, тем лучше структура барботажного слоя и тем больше межфазная поверхность. Структура барботажного слоя зависит от размеров газовых пузырьков и режима их движения.

Рис. 8. Виды смесительных теплообменников: а — каскадный теплообменник; б —барботажный; в — полый с разбрызгивателем; г — струйный; д — насадочная колонна: 1 — контактная камера; 2 — насадка; 3 — штуцер для входа газа; 4 — патрубок для подачи жидкости; 5 — штуцер для удаления газа; 6 — спускной штуцер для жидкости; 7 — распылительное устройство; 8 — распределительная тарелка; 9 — решетка

Полые контактные теплообменники (с разбрызгивателями) нашли применение при конденсации паров, охлаждении, сушке и увлажнении газов, упаривании и сушке растворов, нагревании воды и др. На рис. 8, в показана схема контактного водонагревательного теплообменника.

Струйные (эжекторные аппараты) применяются редко и только для конденсации паров. На рис. 8, г показана схема такого конденсатора.

Конструктивно смесительные теплообменные аппараты выполняются в виде колонн из материалов, устойчивых к воздействию обрабатываемых веществ, и рассчитываются на соответствующее рабочее давление. Насадочные и полые аппараты чаще всего изготовляются железобетонными или кирпичными. Каскадные, барботажные и струйные аппараты выполняются из металла. Высота колонн обычно в несколько раз превышает их поперечное сечение.

Каждому типу контактного устройства свойственны особенности, которые следует учитывать при выборе аппарата.

Источник: http://www.eti.su/articles/over/over_1553.html»

Мне очень часто приходиться слышать вопрос от клиентов — что такое теплообменник в системе отопления? Вопрос простой, на первый взгляд нелепый и все же справедливый. Ведь, казалось бы, любая система отопления прекрасно обходиться без теплообменника даже при производстве горячей воды.

Вопрос о непосредственном отборе горячей воды из системы отопления сложен, поэтому давайте разберем его немного позже, в другой статье. А сейчас разберемся с вопросом, зачем в системе отопления стоит теплообменник?

Скажу сразу, теплообменник стоит не в каждой системе отопления, и даже более, в нашей стране это редкость. А вот в остальном мире повсеместно. Там все устроено по-другому, котельные работают без персонала, температура на выходе одна, максимально необходимая для обеспечения теплом в самые лютые, по их меркам морозы. Каждый потребитель берет тепла столько, сколько считает нужным, то количество тепла за которое он готов или в состоянии оплатить.

В отопительном контуре в качестве теплоносителя может использоваться не только вода (хотя чаще всего все-таки умягченная с помощью комплексонов и омагниченная вода), это может быть антифриз, масло или другая жидкость, но даже если вода ни кто и не подумает брать воду прямо из системы отопления, эту ему обойдется очень дорого. Вот здесь и приходит на выручку теплообменник, который устанавливается в систему отопления и разделяет ее на две части, систему отопления от поставщика к потребителю и систему отопления самого потребителя.

После теплообменника установленного в системе отопления потребитель ставит множество регуляторов, некоторое подобие нашей системы погодного регулирования, которые следят за температурой в различных комнатах, в системе подачи горячей воды, теплого пола, рекуперации и т.д.


Схема ИТП при независимом присоединении к тепловой сети через теплообменник.

У нас в стране такая система отопления называется независимой, на ней построено большинство блочных тепловых пунктов и основное ее назначение несколько другое, кроме погодного регулирования теплообменник в системе отопления предотвращает выход из строя современных пластиковых труб, которые повсеместно успешно внедряются в современных отопительных системах.

Такие трубы выдерживают максимальную температуру до 90 градусов С, при этом максимальный срок труб из PPRS материалов (а правильно их называют именно так) при такой температуре составляет не более 5 месяцев. Как видите не много, хорошо, что и сильные морозы у нас так долго не держатся.

Надеюсь теперь Вам понятно, что такое теплообменник в системе отопления.

Теперь для любознательных, какой теплообменник чаще всего применяется в независимой системе отопления и как он выглядит.

Чаще всего в блочных тепловых пунктах, построенных по схемам независимого отопления, применяются пластинчатые теплообменники. Устройство теплообменников очень хорошо описано на этом сайте, а вкратце смотрите на рисунке ниже.

Устройство пластинчатого разборного теплообменника.

В основе любого пластинчатого теплообменника лежит набор пластин, перфорированных особым способом штамповкой, для увеличения площади теплообмена и формирования каналов по которым движется вода. Пластины собраны в пакет, на торцевой неподвижной плите имеются патрубки для ввода и вывода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

Где устанавливать такой теплообменник в системе отопления или горячего водоснабжения роли не имеет, отличаются только сами схемы блочных тепловых пунктов и мощность, на которую рассчитаны пластинчатые теплообменники. А подобрать и изготовить пластинчатый теплообменник очень легко, как и потом увеличить или уменьшить его мощность, если конечно ваш теплообменник разборный, а не паяный.

Если кому недостаточно сведений об устройстве пластинчатого теплообменника или блочного теплового пункта, есть необходимость в его подборе или расчете, проектировании рекомендую очень толковый сайт http://ridan-ug.ru/ поставщика теплообменного оборудования Ридан.

А тему сегодняшней статьи — что такое теплообменник в системе отопления можно считать исчерпанной. Есть у Вас есть вопросы по работе теплообменного оборудования задавайте, с удовольствием отвечу, Юрий Олегович Парамонов, ООО Энергостром, 2016 год.

Источник: http://kip-mtr.ru/chto-takoe-teploobmennik-v-sisteme-otoplenia/»

[FAQ] Выбор: газовый котел без ГВС, с битермическим теплообменником или с двумя раздельными теплообменниками — какой лучше?

В процессе выбора газового котла каждый разумный человек задается вопросами «что такое теплообменник в газовом котле?», «битермический теплообменник или два раздельных?» и «какой выбрать теплообменник?». А также пытается представить у себя в голове схему работы теплообменника. В данной статье мы дадим ответы на эти вопросы, покажем что это такое и как это работает, а также поможем выбрать какой же лучше подходит именно Вам.

Теплообменник — это устройство для передачи тепла от нагретого ( жидкого или газообразного ) теплоносителя более холодному. (Энциклопедия Кольера)

Посмотрим на теплообменники (2) на функциональной схеме работы газовых котлов ROC серии OPTIMA:

Сгораемый над горелкой (4) газ нагревает пластины медного теплообменника (2), которые передают это тепло медным трубкам с протекающими в них жидкостями (жидкость для системы отопления и вода для горячего водоснабжения (ГВС)).

Если Вы планируете использовать газовый котел только для обогрева помещений, то вам следует выбрать наиболее дешевое исполнение — без ГВС и дальше можно не читать.

Если есть необходимость в использовании горячей воды в бытовых целях, то стоит уделить время на прочтение и осмысление различий между двумя остальными исполнениями.

В настенных котлах используются 2 способа нагрева горячей воды для хозяйственных нужд:

  1. Нагрев воды для горячего водоснабжения (ГВС) происходит в том же теплообменнике в котором нагревается отопительная жидкость.
  2. Отопительная жидкость нагревается в первичном теплообменнике, а теплообмен между ней и ГВС происходит во вторичном пластинчатом теплообменнике.

Битермический теплообменник – это вид теплообменника котла. Битермический теплообменник необходим для обеспечения нагрева теплоносителя отопления и проточной воды горячего водоснабжения, непосредственно в камере сгорания котла. Конструктивно битермический теплообменник можно охарактеризовать термином «труба в трубе» — в разрезе мы видим трубу разделенную на несколько секторов. Также эту модель называют «сдвоенным теплообменником». В одной части циркулирует теплоноситель отопления, в другой – вода для ГВС. К трубке крепятся специальные медные пластины — ребра теплообменника.

Из рисунка мы видим, что горячая вода протекает по внутренним трубкам, а теплоноситель системы отопления в полостях между внутренней трубкой и наружной. Причем хозяйственная вода протекает последовательно по всем 6-ти трубкам, а отопительная течет по 3-м параллельно в одном направлении и по трем параллельно в обратном.

Когда нет протока ГВС работает насос, отопительная жидкость циркулирует по системе нагреваясь в теплообменнике. Когда появляется проток ГВС, насос отключается, циркуляции по системе нет, в теплообменнике нагревается ГВС.

Преимущества и недостатки битермического теплообменника.

  1. Во время работы котла в режиме отопления в контуре ГВС теплообменника хозяйственная вода нагревается до той же температуры что и отопительная жидкость. Если в системе отопления задана температура выше 60 градусов, то при открытии крана пойдет вода той же температуры что может привести к ожогу. Из-за этого в котлах ROC с битермическим теплообменником температура отопительной жидкости программно ограничена 60 градусами.
  2. В момент использования ГВС в контуре отопления теплоноситель неподвижен, а в момент работы котла на отопление в контуре ГВС вода неподвижна. Соответственно в первом случае теплоноситель, а во втором вода нагреваются до высоких температур без циркуляции что приводит к избыточному образованию водного камня на поверхностях теплообмена.
  3. Из рисунка видно, что теплоноситель циркулирует в одной трубке по 4-м полостям. параллельно. Так же параллельно он циркулирует параллельно по 3-м трубкам теплообменника. Соответственно если засоряется накипью хотя бы одна из 12-ти полостей до такой степени, что проток через нее прекращается, то в этой полости происходит закипание теплоносителя. Это выражается в сильных шумах при работе котла. Такой теплообменник не всегда удается промыть даже при помощи специального оборудования. Стоимость замены теплообменника часто превышает 50% стоимости котла. Для того чтобы избежать неустранимых засоров теплообменника битермический теплообменник нужно промывать намного чаще.
  4. У битермического теплообменника процесс изготовления сложнее чем у монотермического. Он имеет больше стыков, а следственно вероятность появления протечек больше. Бывают так же случаи, когда появляется утечка между контурами внутри теплообменника.
  5. Битермический теплообменник в отличие от монотермического, практически не ремонтопригоден в случае утечки.

2. Газовый котел с двумя раздельными теплообменниками и трехходовым вентилем.

Принцип работы раздельных (первичного и вторичного) теплообменников с трехходовым вентилем:

Когда нет протока ГВС работает насос, отопительная жидкость циркулирует по системе, нагреваясь в теплообменнике. Когда появляется проток ГВС насос продолжает работать, трехходовый кран переводит поток отопительной жидкости с системы отопления на вторичный теплообменник в котором происходит теплообмен между отопительной и хозяйственной водой.

Пластинчатый теплообменник для приготовления горячей воды снимается в считанные секунды – забудьте про труднодоступные гайки в ограниченном пространстве, ведь у ROC это быстросъемное крепление всего лишь 2-мя легко доступными спереди винтами 3-х ходовой переключающий вентиль переключает котел из режима отопления в режим приготовления горячей воды (ГВС). Он выполнен из надежного бронзового сплава и приводится в действие электроприводом 220 Вольт по сигналу электроники. Конструкция уплотнения переключающего клапана содержит запатентованную двойную схему уплотнения и исключает утечки даже при использовании антифриза в качестве теплоносителя.

  1. Наличие вторичного исключает перегрев ГВС свыше 60 градусов, так как теплообмен происходит во вторичном теплообменнике между отопительной жидкостью (максимальная температура 80 градусов) и ГВС. Это исключает риск получения ожога.
  2. В виду того, что ГВС не нагревается выше 60 градусов (в битермическом теплообменнике до 80) и нагрев идет только в тот момент, когда есть проток через второй контур (в битермическом греется всегда) – образование накипи во вторичном теплообменнике идет в разы медленнее чем в битермическом при прочих равных условиях.
  3. Так как в первичном теплообменнике нет второго контура, проходное сечение трубок теплообменника больше и соединить все трубки можно последовательно. Это сводит к минимуму шансы на полный засор теплообменника. И даже сильно забитый накипью теплообменник всегда можно промыть.
  4. По отдельности каждый из узлов стоит дешевле чем битермический теплообменник, а следственно и ремонт в случае поломки будет менее затратный.
  1. Это решение дороже, что отражается на конечной стоимости котла.
  2. В трехходовом вентиле есть механически сопряженные элементы, которые увеличивают риск поломки.

Теплообменник котлов ROC изготавливается на собственном производстве из высококачественной меди со специальным защитным покрытием и обеспечивает срок службы не менее 10 лет. Используются как одинарные, так и битермические «труба в трубе» теплообменники со встроенным приготовлением ГВС.

Источник: http://th54.ru/2015/04/faq-%D0%B1%D0%B5%D0%B7-%D0%B3%D0%B2%D1%81-%D0%B1%D0%B8%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9-%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BE%D0%B1%D0%BC%D0%B5%D0%BD%D0%BD%D0%B8/»

Изготовленный своими руками теплообменник будет служить «сердцем» системы отопления дома

Теплообменник из медной трубы с припаянными пластинами — важнейший элемент современных отопительных котлов

Главным элементом любой из систем отопления служит особое устройство — теплообменник для отопления дома. в котором происходит передача тепла от генератора тепла к теплоносителю. На современном рынке представлено большое количество различных отопительных котлов, но все их разнообразие не ограничивает фантазию домашних умельцев по части самостоятельного изготовления подобных устройств. В нашей статье читателям будет предложено узнать, для чего нужен теплообменник в системе отопления, как его сделать своими руками и каким способом подключить.

В домашних отопительных системах воздух наиболее часто используются поверхностные теплообменники системы отопления, где тепловая энергия передается через поверхности металлических стенок данного устройства.

Принцип отопления через теплообменник наиболее полно реализован в конструкции газовых, твердотопливных или электрических котлов. Вода циркулирует по изогнутым в виде змеевика трубам, установленным внутри отопительного агрегата, и нагревается от температуры горящего топлива. Нагревшийся теплоноситель уходит в трубопровод отопительной системы, а ему на смену в теплообменник поступает остывшая вода из радиаторов.

До сих пор во многих индивидуальных домах традиционным источником тепла остается печь. Она хороша для обогрева небольшой избы, однако в условиях многокомнатного коттеджа ее тепловая мощность недостаточна. Поэтому в частном доме теплообменник в системе отопления нужен для того, чтобы превратить печку в полноценный водонагревательный котел. Размер и форма самодельного теплообменника для отопления должна вписываться в габариты топливной камеры печи. К этому устройству можно подключить трубопроводы и радиаторы, и тогда отопление дома станет более эффективным.

Если вмонтировать в печь водяной теплообменник для отопления, во всем доме станет гораздо теплее

Более практичны водяные теплообменники для отопления. Это обусловлено тем, что вода намного лучше передает тепловую энергию, чем воздух. Вместе с тем, воздушный теплообменник для отопления также находит применение. Кроме водяного и воздушного, применяется также и теплообменник на дымоход для отопления, который устанавливают не внутрь, а снаружи.

Все выпускаемые промышленностью отопительные устройства оснащены теплообменниками, конструкция которых максимально приспособлена для эффективного нагрева воды.

В заводских условиях теплообменные устройства изготавливают из меди. Труба представляет собой змеевик, поперек изгибов которого расположено множество пластин, обеспечивающих большую площадь теплообмена.

Соорудить у себя дома самодельный теплообменник для отопления, чтобы он был точно как заводской, практически нереально. Поэтому придется выбрать вариант попроще.

Несложный по конструкции самодельный теплообменник послужит для отопления дома

Принцип действия самодельного теплообменника состоит в том, что печь передает ему энергию от сгорания дров или угля, а нагревшаяся вода расходится по трубам во все комнаты. Такой способ отопления позволяет обитателям дома наслаждаться равномерным распределением тепла. Кроме того, все помещения прогреваются гораздо быстрее, а расходы на приобретение топлива снижаются.

Усовершенствовать печное отопление частного дома можно двумя способами:

  • построить печь «с нуля» под конкретный размер теплообменника;
  • установить в существующую печь самодельный теплообменник, изготовленный по размерам топки.

Схема кирпичной печи с теплообменником

Изготовив теплообменник для отопления своими руками, домовладелец может быть уверенным, что его печь с водяным контуром станет действовать не хуже настоящего твердотопливного котла. Отличие будет только в том, что у печки расположение входного отверстия теплообменника получится немного выше над полом, чем у заводских котлов. Это довольно существенная разница, которая может влиять на скорость естественной циркуляции теплоносителя.

Подключение теплообменника к системе отопления нужно сделать таким образом, чтобы труба поступления холодной воды (обратка) была расположена как можно ниже.

Так же, как в обычной системе отопления, в верхней точке трубопроводов нужно вмонтировать расширительный бачок. Он будет компенсировать изменение объема нагретой воды и выпускать из системы пузырьки воздуха. Если отопление через теплообменник с естественной циркуляцией окажется недостаточным для обогрева большого коттеджа, придется установить в систему циркуляционный насос.

Для присоединения самодельного теплообменника для отопления используют 2 штуцера: один снизу (вход холодной воды), другой сверху (выход горячей). При монтаже теплообменника нужно обеспечить необходимый уклон труб, как требуется по схеме.

Принцип подключения теплообменника к системе отопления

Если разбираться, для чего нужен теплообменник в системе отопления, можно заметить несколько явных преимуществ:

  1. Простота изготовления. Если в доме уже существует печь, то придется потратиться только на изготовление самодельного теплообменника и монтаж системы отопления.
  2. Комбинированное отопление. Дополнительно к обогреву дома от поверхности печки прибавится водяная система отопления.
  3. Разнообразие видов топлива. Можно топить печь любыми твердыми энергоносителями, в отличие от котлов, ориентированных только на определенный вид топлива.
  4. Красивый внешний вид. Сохранить традиционный вид русской печи бывает полезно при создании интерьера в национальном стиле.

Среди недостатков отопления через теплообменник можно назвать: менее высокий КПД по сравнению с заводскими котлами и отсутствие автоматического контроля за интенсивностью нагрева теплоносителя.

Регистр из нескольких труб

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Пример использования чугунных радиаторов в качестве теплообменника в кирпичной печи

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Если предполагается топить печь углём, лучше установить теплообменник из чугуна. Этот металл более крепкий, и стенки устройства долго не будут прогорать.

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Можно взять для примера какую-либо известную модель котла и в соответствии с его параметрами изготовить свой самодельный теплообменник.

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Теплообменник устанавливают внутрь печи в процессе ее кладки

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления. Обратим внимание и на другие сферы их применения.

Если охарактеризовать воздушную систему отопления, можно сказать, что у нее больше минусов, чем плюсов. Воздушные теплообменники для отопления мало распространены в частном жилом секторе, они пока еще не стали привычными.

Преимуществом этой системы называют возможность совмещать обогрев с принудительной вентиляцией. Однако возможные ошибки при ее проектировании и монтаже могут свести преимущества к минимуму. В воздуховодах бывает слышен шум вентилятора, а в помещениях ощущается температурный дисбаланс.

Теплообменники для воздушного отопления существуют прямого нагрева, а также косвенного. В первых из них газовое или дизельное топливо сгорает непосредственно в самом теплообменнике. В других моделях используется промежуточный теплоноситель.

Смонтированный на дымоход теплообменник использует вылетающую в трубу тепловую энергию

На дачах и в банях у «народных умельцев» можно увидеть самодельный водяной или воздушный теплообменник, установленный на дымоход небольшой печи. Получается очень выгодно: тепло не уходит вместе с дымом, а часть его служит для нагрева воды.

Установив теплообменник на дымоход для отопления, можно получать довольно большое количество горячей воды. Конечно, этого не хватит, чтобы обогреть весь дом, но достаточно, чтобы поставить в предбаннике один-два радиатора. Использовать теплообменник на дымоход можно как для отопления, так и для быстрого нагрева воды в бане.

Подобное устройство может быть очень простым в изготовлении. За основу можно взять отрезок большой трубы диаметром 500–700 мм, или сварить бак из нержавейки. В центре конструкции будет проходить вертикальная труба, соответствующая диаметру дымохода, а сверху и снизу должны быть приварены два патрубка.

Отдавая свою температуру теплообменнику, выходящие из печи продукты сгорания быстро остывают. Из-за этого уменьшается тяга в дымоходе и несколько замедляется горение топлива.

Изготовление теплообменника для отопления своими руками может стать способом устроить в доме полноценное водяное отопление без приобретения дорогостоящего оборудования.

Характеристика теплообменников для отопления и их изготовление своими руками

Теплообменники для отопления являются неотъемлемой частью практически любой отопительной системы. Ведь именно через них осуществляется обогрев внешней среды. Основной уют в доме поддерживается за счет комфортной температуры воздуха. Для этого необходимо обеспечить дом хорошим котлом и качественными теплообменниками.

Существует огромное количество вариантов отопительной системы. Однако большинство из них имеют водяной теплообменник. Это наиболее качественный, популярный и недорогой вариант, который позволяет поддерживать оптимальную температуру помещения регулярно. Такое устройство наиболее актуально для частного дома или квартиры. Но когда речь заходит о других видах помещения, то стоит задуматься о других разновидностях. Ведь в бане более актуальным станет теплообменник, изготовленный из кирпича. Только он по-настоящему может раскрыть весь потенциал парной. Водяная система в бане будет не столь актуальна.

Современные специализированные магазины полны подобных товаров. Здесь можно найти устройства компаний-производителей разного качества, уровня обмена температурами и ценовых категорий. Цена на устройство может быть самой разной, в зависимости от большого количества факторов. Однако если даже самый дешевый вариант не по карману, то можно изготовить теплообменник своими руками.

Теплообменник для системы отопления частного дома чаще всего предусматривает устройство, которое имеет поверхностный контакт. В таком случае имеется теплообменник, который подогревается изнутри и через поверхность. Чаще всего это металл, который и осуществляет обогрев воздуха вокруг.

Принцип работы наиболее полно раскрывается в отопительной системе, которая имеет газовые, твердотопливные или электрические котлы. От нагревательного устройства по всей системе отопления направляется горячая вода. Она циркулирует по трубам и теплоносителям, которые имеют изогнутую форму. Такая конфигурация задерживает воду, как следует прогревая ее. В конце пути холодная вода снова поступает к котлу, где заново начинает нагреваться.

Еще одним вариантом может стать классическая печь. Она довольно эффективно справляется со своей функцией, однако предназначена только для маленьких помещений. Если есть необходимость отопить коттедж, то такого теплообменника будет недостаточно. Такое устройство будет актуальным в каком-то маленьком домике или же бане. Чтобы превратить печь в полноценный отопительный котел, необходимо предусмотреть для нее водяной теплообменник. В таком случае появляется возможность отапливать даже 2-этажный коттедж при помощи каменной печи. Что касается размеров теплообменников, то они зависят от размеров топливной камеры отопительного устройства.

Теплообменник для отопления лучше всего выбирать водяной. Связано это с тем, что вода значительно лучше проводит тепло, чем воздух. Ее способность повысить температуру помещения значительно выше, чем у воздушных теплообменников.

Все отопительные системы, которые изготавливаются в заводских условиях, имеют в своем оснащении теплообменники. Их устройство достаточно сложно, сделать их своими руками практически невозможно. Именно поэтому придется прибегать к более простым вариантам. Теплообменник изготавливается в виде змеевика и имеет внутри множество поперечных пластин, которые увеличивают обогреваемую площадь. Именно такие конструкции используются для отопления частного дома.

Чтобы изготовить теплообменник своими руками. необходимо учесть множество нюансов. Только тщательно продумав все этапы работы, в конечном результате вы получите устройство, которое сможет обеспечить оптимальную температуру в доме. Основным плюсом устройства, изготовленного своими руками, является то, что цена такого изделия значительно ниже, ведь тратиться придется только на покупку материалов.

Чтобы обеспечить максимальный уровень отопления дома, необходимо правильно выбрать материал для теплообменника. Каждый металл имеет свой уровень теплопроводности. У меди этот показатель в 7 раз выше, чем у стали, поэтому 2 трубы одинакового диаметра способны обеспечивать разный уровень обогрева. Поэтому оптимальным вариантом для такого устройства является именно медь. Цена при этом у данного материала вполне приемлема.

Что касается определения мощности теплообменника, то данные вычисления достаточно трудны. Связано это с тем, что слишком большое количество факторов влияет на этот показатель. Однако в среднем один метр змеевика диаметром в 50-60 мм способен выдавать 1кВт тепловой мощности. От этого показателя можно отталкиваться при проведении расчетов.

Особенности конструкции при изготовлении своими руками могут быть самыми разными. Можно сварить трубу в виде змеевика или же обычного прямоугольника, однако есть перечень правил, на которые стоит обращать внимание в обязательном порядке:

  1. Диаметр внутренней части трубы не должен быть меньше 5 мм. В противном случае вода может просто закипеть.
  2. Чтобы не допустить перегрева металла, толщина стенок должна быть не менее 3 мм.
  3. Между стенками топки и теплообменником должен быть зазор, размер которого 10-15 мм. Ведь металл имеет свойство расширяться.

Такими основными правилами обладает водяной теплообменник. Его изготовление (при должном владении сваркой) не составит особого труда. Правильный подход к системе отопления дома позволит обеспечить комфортные условия проживания.

Обязательно прочтите эти материалы:

    • Труба дымохода в бане
    • Теплообменники для горячего водоснабжения

Теплообменник — устройство, предназначенное для эффективной передачи тепла от одного теплоносителя другому.

Такой процесс может быть осуществлён несколько раз в одной системе, ведь частным случаем теплообменника является и радиатор отопления. и газовый или электрический котёл.

Наиболее распространённая модель теплообменника, используемая в системе отопления, представляет собой 2 металлические ёмкости, которые подобно матрёшке находятся одна в другой, и через металлическую стенку производят передачу тепла.

Достоинства такого механизма заключается в том, что благодаря герметичной конструкции не происходит взаимное перемешивание однородных сред, а при использовании разных по физическим свойствам теплоносителей не происходит перемешивания.

Прежде, чем приступать к изготовлению теплообменника, необходимо определиться с тем какой принцип передачи тепла будет реализован в таком устройстве.

Для изготовления такого устройства необходимо приготовить следующие материалы и инструменты:

  • сварочный аппарат;
  • болгарка;
  • 2 листа нержавеющей рифлёной стали толщиной 4 мм;
  • плоский лист нержавеющей стали толщиной 4 мм;
  • электроды;
  1. Из нержавеющей, рифлёной стали нарезаются квадраты со стороной 300 мм, в количестве 31 шт.
  2. Затем. из плоской нержавейки нарезается лента шириной 10 мм и общей длиной 18 метров. Данная лента разрезается на отрезки длиной 300 мм.
  3. Рифлёные квадраты свариваются друг с другом. полосой 10 мм с двух противоположных сторон, таким образом, чтобы каждая следующая секция была перпендикулярна предыдущей.
  4. В итоге. получается 15 секций, обращённых в одну сторону, и 15 в другую в одном корпусе кубической формы. Рифлёная поверхность таких секции позволяет эффективно передавать теплоту от одного теплоносителя другому, при этом, не происходит взаимное перемещение различных или однородных сред.
  5. В том случае. когда используется для передачи тепла не воздушная масса, а жидкость, к тем секциям, в которых будет циркулировать вода, приваривается коллектор из нержавеющей стали. Коллектор изготавливается из плоской нержавейки. Для этой цели болгаркой вырезаются прямоугольники: 300 *300 мм — 2 шт; 300 *30 мм — 8 шт. Таким образом, получится комплект, из которого сваривается 2 коллектора, которые напоминают по своей форме квадратную крышку от коробки.
  6. В каждом из коллекторовделается отверстие. к которому приваривается патрубок для последующего соединения с трубами отопительной системы или обеспечения горячим водоснабжением.
  7. Отверстия на коллекторах делаются у одного из углов а, а при установке их на теплообменник входной патрубок должен быть расположен в нижней части такой конструкции, а выходной — в верхней.

Рассмотренный выше теплообменник устанавливается открытой стороной в систему циркуляции горячих газов.

Таким образом, раскалённый газообразный теплоноситель будет передавать теплоту рифлённым стенкам нержавеющих пластин, которые, в свою очередь, будут нагревать жидкость.

Теплообменник такой конструкции можно использовать для передачи тепла от одной жидкости, к другой. Для этого на открытые части пластин приваривается с 2 сторон стальная рубашка с патрубком вышеописанной конструкции.

Обычная дровяная печь может не только отапливать помещение традиционным способом, но и использоваться для нагрева воды для отопления комнат, в которых данный обогревательный прибор не установлен.

Для изготовления такого устройства понадобятся следующие материалы и инструменты:

  • труба стальная диаметром 325 мм, длиной 1 метр;
  • труба стальная диаметром 57 мм, длиной 6 метров;
  • стальной лист толщиной 4 мм;
  • сварочный аппарат;
  • электроды;
  • газовый резак;
  • белый маркер;
  1. Цилиндр из трубы диаметром 325 мм устанавливается вертикально на стальной лист и обводится маркером или мелом.
  2. Обведённая окружность вырезается газовым резаком. Затем по получившемуся металлическому блину изготавливается ещё одна окружность такого же диаметра.
  3. В каждом из таких блинов вырезается 5 отверстий диаметром 57 мм. Такие отверстия должны быть равноудалены друг от друга, а также от середины блина и его края. Блины привариваются к цилиндру таким образом, чтобы их отверстия располагались напротив друг друга.
  4. Труба 57 мм нарезается болгаркой на отрезки длиной 101 см. Необходимо подготовить 5 таких отрезков.
  5. Каждый отрезок трубы устанавливается в отверстия таким образом, чтобы края этой трубы на 1 мм выходили из отверстий верхних и нижних «блинов». Электросваркой отрезки труб свариваются. В результате, получается металлический цилиндр, внутри которого находятся трубы меньшего диаметра. По этим трубам будет проходить горячий воздух и дымовые газы, в результате чего, труба будет нагреваться и через свои стенки передавать тепло жидкости, которая будет находиться внутри цилиндра.
  6. Для осуществления циркуляции жидкости внутри металлического цилиндра, в нижней и верхней его части привариваются патрубки. Снизу такой конструкции будет подаваться холодная вода, в верхней — осуществляться забор нагретой таким образом жидкости.

Воздушный теплообменник — это пластинчатый прибор, который изготавливается по тому же принципу, как и вышеописанный в данной статье пластинчатый теплообменник, только с той лишь разницей, что коллектор на такое устройство не устанавливается.

Как в вертикальной, так и в горизонтальной плоскости, через устройство в качестве теплоносителя используется газ. Только для нагрева используются горячие газы образованные в результате горения топлива, а в качестве нагреваемого газа выступает воздух, который для большей эффективности может подаваться через теплообменник принудительно с помощью вентилятора.

Теплообменники такой конструкции очень просты в изготовлении и в эксплуатации.

Для того, чтобы изготовить такой прибор самостоятельно, понадобятся следующие материалы и инструменты:

  • электросварка;
  • электроды;
  • болгарка;
  • труба диаметром 102 мм, длиной 2 метра;
  • труба диаметром 57 мм. длиной 2 метра;
  • стальной лист толщиной 4 мм;
  1. Из листовой стали вырезаются заглушки, в середине которых делаются отверстия диаметром 57 мм.
  2. Эти заглушки привариваются к трубе 102 мм, таким образом, чтобы отверстия заглушек оказались посередине диаметра трубы. В эти отверстия заводится труба 57 мм и качественно проваривается по окружности.
  3. В основной трубе 102 мм делается 2 отверстия для установки входящего и выходного патрубков. Эти отверстия должны располагаться как можно дальше друг от друга.

Принцип работы такого теплообменника очень прост: горячий теплоноситель, проходя по трубе меньшего диаметра, через металлические стенки трубы отдаёт тепло, жидкости, которая находится в полости трубы большего диаметра. Таким образом, происходит передача тепловой энергии, в то же время не происходит перемешивания жидкостей, которые могут быть не однородны, например вода и минеральное масло.

При подключении такой системы, как правило, теплообменник располагается в горизонтальной плоскости, а циркуляция жидкостей для повышения КПД осуществляется разнонаправлен

Чертеж собранного водо-водяного теплообменника труба в трубе:

Своевременная промывка и очистка таких устройств, позволяет служить таким приборам много лет безотказно. Особенно нуждаются в своевременной очистке теплообменники, которые в качестве теплоносителя используют разогретые газы от сжигания твёрдого топлива.

Как правило, в таких системах, пластинчатые каналы забиваются сажей, что резко снижает КПД такого устройства, а при чрезмерном забивании рабочих отверстий продуктами горения, устройство может полностью выйти из строя.

Для качественной очистки таких теплообменников, устройство полностью демонтируется и каналы, тщательно очищают от сажи с последующей промывкой пластин.

Контур, в котором циркулирует вода повышенной жёсткости, необходимо промыть специальным средством от накипи или раствором лимонной кислоты. При значительном слое известковых отложений, производят механическую очистку пластин. Для этой цели, коллектор срезается болгаркой по шву. Пластины очищаются от накипи, затем коллектор приваривается на прежнее место.

Подобным образом происходит очистка системы теплообмена «труба в трубе». Если не удаётся химическим способом эффективно удалить накипь, труба разрезается, накипь удаляется механическим способом. Затем происходит сборка устройства.

Существует 2 типа теплообменников:

Наиболее распространённый тип теплообменника, который получил распространение не только в системах отопления зданий, но и во многих производственных процессах. В качестве теплоносителя, который может быть использован для передачи тепла в таких устройствах, используется не только вода, но и водяной пар, различные минеральные масла и химические вещества.

Поверхностные модели разделяются на рекуперативные и регенеративные:

  1. Рекуперативные — передают тепло через стенку теплоносителя.
  2. Регенеративные — такие теплообменники функционируют в периодическом режиме. Сначала горячий теплоноситель нагревает поверхность теплообменника, затем к стенкам, которые аккумулировали тепло, подводится холодный теплоноситель.

При использовании такого вида устройств, происходит проникновение горячего теплоносителя в холодный. В результате такого смешивания, происходит прямая передача тепла. В системе отопления такой вид теплопередачи используется редко.

Обычно, смесительный способ, применяется при солнечном нагреве воды, когда теплоноситель из теплогенератора поступает в накопительную ёмкость, в которой происходит смешивание, горячей и холодной жидкости.

Источник: http://teplosten24.ru/teploobmennik-dlya-sistemy-otopleniya-svoimi-rukami.html»

Комментарии

Комментирование отключено.